The value of proteomic studies of the latest markers of kidney damage in the urine to assess the course, progression and complications in patients with CKD

Authors

DOI:

https://doi.org/10.22141/2307-1257.11.2.2022.363

Keywords:

chronic kidney disease, hyperphosphatemia, uromodulinа, Klotho protein, fetuin A

Abstract

Сhronic kidney Disease (CKD) is the cause of both morbidity and mortality worldwide. In Ukraine, 12 % of the population is diagnosed with CKD. Significantly worsen the quality of life in patients with CKD progression of renal fibrosis and impaired mineral homeostasis. Early diagnosis and treatment are the main measures to prevent CKD progression and delay adverse effects. Deficiency of early, non-invasive biomarkers adversely affects the ability to rapidly detect and treat CKD. Proximal tubular lesions play an important role in the progression of CKD. There are new markers of kidney damage, such as uromodulin (UMOD), Klotho protein and post-translational modifications of fetuin A (FtA). Treatment of CKD in the early stages may improve renal function and/or slow the progression of CKD.

Downloads

Download data is not yet available.

References

Benjamin O, Lappin SL. End-Stage Renal Disease. 2021 Sep 16. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–.

Mizdrak M, Kumrić M, Kurir TT, Božić J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J Pers Med. 2022 Mar 31;12(4):548. doi: 10.3390/jpm12040548.

Catanese L, Siwy J, Mavrogeorgis E, et al. A Novel Urinary Proteomics Classifier for Non-Invasive Evaluation of Interstitial Fibrosis and Tubular Atrophy in Chronic Kidney Disease. Proteomes. 2021 Jul 13;9(3):32. doi: 10.3390/proteomes9030032.

Kovalenko VM, editor. Internal Medicine. Textbook for students of institutions of higher medical education of III-IV level of accreditation and doctors of postgraduate education based on the recommendations of evidence-based medicine. Kyiv: Morion; 2019. 960 p.

Yuan Q, Ren Q, Li L, et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat Commun. 2022 Jan 21;13(1):438. doi: 10.1038/s41467-022-28096-z.

Yin T, Chen Y, Tang L, Yuan H, Zeng X, Fu P. Relationship between modifiable lifestyle factors and chronic kidney disease: a bibliometric analysis of top-cited publications from 2011 to 2020. BMC Nephrol. 2022 Mar 25;23(1):120. doi: 10.1186/s12882-022-02745-3.

Petra E, Siwy J, Vlahou A, Jankowski J. Urine peptidome in combination with transcriptomics analysis highlights MMP7, MMP14 and PCSK5 for further investigation in chronic kidney disease. PLoS One. 2022 Jan 19;17(1):e0262667. doi: 10.1371/journal.pone.0262667.

Šalamon Š, Bevc S, Ekart R, Hojs R, Potočnik U. Polymorphism in the GATM Locus Associated with Dialysis-Independent Chronic Kidney Disease but Not Dialysis-Dependent Kidney Failure. Genes (Basel). 2021 May 28;12(6):834. doi: 10.3390/genes12060834.

Będzichowska A, Jobs K, Kloc M, Bujnowska A, Kalicki B. The Assessment of the Usefulness of Selected Markers in the Diagnosis of Chronic Kidney Disease in Children. Biomark Insights. 2021 Apr 20;16:11772719211011173. doi: 10.1177/11772719211011173.

Gan Y, Zhao M, Feng J. Association of fetuin-A levels and left ventricular diastolic dysfunction in patients on haemodialysis. Int Urol Nephrol. 2021 Aug;53(8):1689-1694. doi: 10.1007/s11255-021-02796-9.

Panizo S, Martínez-Arias L, Alonso-Montes C, et al. Fibrosis in Chronic Kidney Disease: Pathogenesis and Consequences. Int J Mol Sci. 2021 Jan 2;22(1):408. doi: 10.3390/ijms22010408.

Ludes PO, de Roquetaillade C, Chousterman BG, Pottecher J, Mebazaa A. Role of Damage-Associated Molecular Patterns in Septic Acute Kidney Injury, From Injury to Recovery. Front Immunol. 2021 Mar 1;12:606622. doi: 10.3389/fimmu.2021.606622.

Lavainne F, Guillot P, Figueres L. Chronic kidney disease - Mineral bone disorders: Physiopathology and guidelines. Rev Med Interne. 2022 Apr;43(4):225-232. French. doi: 10.1016/j.revmed.2022.01.009.

Goyal R, Jialal I. Hyperphosphatemia. 2021 Sep 28. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–.

Tomo S, Birdi A, Yadav D, Chaturvedi M, Sharma P. Klotho: A Possible Role in the Pathophysiology of Nephrotic Syndrome. EJIFCC. 2022 Apr 11;33(1):3-10.

Turek M, Stępniewska J, Różański J. The Multifactorial Pathogenesis of Calciphylaxis: A Case Report. Am J Case Rep. 2021 Jun 7;22:e930026. doi: 10.12659/AJCR.930026.

Nseir V, Bradauskaite G, Pedroza M, Minimo C, Zaki R, Chewaproug D. A Rare Case of Calciphylaxis in an Orthotopic Liver Transplant Recipient with Acute Kidney Injury. Exp Clin Transplant. 2021 Apr;19(4):382-385. doi: 10.6002/ect.2017.0123.

Whitehead M, Shanahan CM. Circulating uromodulin: a cytokine trap for osteoinductive inflammatory mediators in chronic kidney disease? Cardiovasc Res. 2021 Feb 22;117(3):651-652. doi: 10.1093/cvr/cvaa348.

Correll VL, Otto JJ, Risi CM, et al. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis. J Extracell Vesicles. 2022 Feb;11(2):e12184. doi: 10.1002/jev2.12184.

Tran AC, Melchinger H, Weinstein J, et al. Urine testing to differentiate glomerular from tubulointerstitial diseases on kidney biopsy. Pract Lab Med. 2022 Apr 6;30:e00271. doi: 10.1016/j.plabm.2022.e00271.

Wen Y, Parikh CR. Current concepts and advances in biomarkers of acute kidney injury. Crit Rev Clin Lab Sci. 2021 Aug;58(5):354-368. doi: 10.1080/10408363.2021.1879000.

Ix JH, Shlipak MG. The Promise of Tubule Biomarkers in Kidney Disease: A Review. Am J Kidney Dis. 2021 Nov;78(5):719-727. doi: 10.1053/j.ajkd.2021.03.026.

Puthumana J, Thiessen-Philbrook H, Xu L, et al. Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest. 2021 Feb 1;131(3):e139927. doi: 10.1172/JCI139927.

You R, Zheng H, Xu L, et al. Decreased urinary uromodulin is potentially associated with acute kidney injury: a systematic review and meta-analysis. J Intensive Care. 2021 Nov 15;9(1):70. doi: 10.1186/s40560-021-00584-2.

Chang C, Obeid W, Thiessen-Philbrook H, Parikh CR. Sample Processing and Stability for Urine Biomarker Studies. J Appl Lab Med. 2021 Nov 1;6(6):1628-1634. doi: 10.1093/jalm/jfab082.

Obert LA, Elmore SA, Ennulat D, Frazier KS. A Review of Specific Biomarkers of Chronic Renal Injury and Their Potential Application in Nonclinical Safety Assessment Studies. Toxicol Pathol. 2021 Jul;49(5):996-1023. doi: 10.1177/0192623320985045.

Rudnicki M, Siwy J, Wendt R, et al; PERSTIGAN working group. Urine proteomics for prediction of disease progression in patients with IgA nephropathy. Nephrol Dial Transplant. 2021 Dec 31;37(1):42-52. doi: 10.1093/ndt/gfaa307.

Mukhin N, Konoplev G, Oseev A, et al. Label-Free Protein Detection by Micro-Acoustic Biosensor Coupled with Electrical Field Sorting. Theoretical Study in Urine Models. Sensors (Basel). 2021 Apr 6;21(7):2555. doi: 10.3390/s21072555.

Ascher SB, Scherzer R, Estrella MM, et al; SPRINT research group. Kidney tubule health, mineral metabolism, and adverse events in persons with CKD in SPRINT. Nephrol Dial Transplant. 2021 Sep 2:gfab255. doi: 10.1093/ndt/gfab255.

Bullen AL, Katz R, Jotwani V, et al. Biomarkers of Kidney Tubule Health, CKD Progression, and Acute Kidney Injury in SPRINT (Systolic Blood Pressure Intervention Trial) Participants. Am J Kidney Dis. 2021 Sep;78(3):361-368.e1. doi: 10.1053/j.ajkd.2021.01.021.

van Duijl TT, Ruhaak LR, Smit NPM, et al. Development and Provisional Validation of a Multiplex LC-MRM-MS Test for Timely Kidney Injury Detection in Urine. J Proteome Res. 2021 Dec 3;20(12):5304-5314. doi: 10.1021/acs.jproteome.1c00532.

You R, Chen L, Xu L, et al. High Level of Uromodulin Increases the Risk of Hypertension: A Mendelian Randomization Study. Front Cardiovasc Med. 2021 Sep 1;8:736001. doi: 10.3389/fcvm.2021.736001.

Joseph CB, Mariniello M, Yoshifuji A, et al. Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin. J Am Soc Nephrol. 2022 Mar;33(3):511-529. doi: 10.1681/ASN.2021040491.

Holzmann-Littig C, Renders L, Steubl D. Uromodulin - a new marker of kidney function? Clin Nephrol. 2021 Jun;95(6):347-349. doi: 10.5414/CN110303.

Wang J, Liu L, He K, Gao B, Wang F, Zhao M, Zhang L, On Behalf Of The Chinese Cohort Study Of Chronic Kidney Disease C-Stride. UMOD Polymorphisms Associated with Kidney Function, Serum Uromodulin and Risk of Mortality among Patients with Chronic Kidney Disease, Results from the C-STRIDE Study. Genes (Basel). 2021 Oct 23;12(11):1687. doi: 10.3390/genes12111687.

Denova LD. Uromodulin as a potential candidate marker for predicting the course of chronic kidney disease. Pocki. 2021;10(4):237-243. doi: 10.22141/2307-1257.10.4.2021.247898.

Franceschini N, Le TH. Urine Uromodulin and Genetics of its Variation. J Am Soc Nephrol. 2022 Mar;33(3):461-462. doi: 10.1681/ASN.2022010027.

Chan J, Svensson M, Tannæs TM, Waldum-Grevbo B, Jenssen T, Eide IA. Associations of Serum Uromodulin and Urinary Epidermal Growth Factor with Measured Glomerular Filtration Rate and Interstitial Fibrosis in Kidney Transplantation. Am J Nephrol. 2022;53(2-3):108-117. doi: 10.1159/000521757.

Then C, Herder C, Then H, et al. Serum uromodulin is inversely associated with biomarkers of subclinical inflammation in the population-based KORA F4 study. Clin Kidney J. 2020 Sep 6;14(6):1618-1625. doi: 10.1093/ckj/sfaa165.

Then C, Then HL, Lechner A, et al. Serum uromodulin and decline of kidney function in older participants of the population-based KORA F4/FF4 study. Clin Kidney J. 2020 May 1;14(1):205-211. doi: 10.1093/ckj/sfaa032.

Mary S, Boder P, Rossitto G, et al. Salt loading decreases urinary excretion and increases intracellular accumulation of uromodulin in stroke-prone spontaneously hypertensive rats. Clin Sci (Lond). 2021 Dec 22;135(24):2749-2761. doi: 10.1042/CS20211017.

Alesutan I, Luong TTD, Schelski N, et al. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc Res. 2021 Feb 22;117(3):930-941. doi: 10.1093/cvr/cvaa081.

Ponte B, Pruijm M, Ackermann D, et al. Uromodulin, Salt, and 24-Hour Blood Pressure in the General Population. Clin J Am Soc Nephrol. 2021 May 8;16(5):787-789. doi: 10.2215/CJN.11230720.

Li S, Wang L, Sun S, Wu Q. Hepsin: a multifunctional transmembrane serine protease in pathobiology. FEBS J. 2021 Sep;288(18):5252-5264. doi: 10.1111/febs.15663.

Nanamatsu A, Mori T, Ando F, et al. Vasopressin Induces Urinary Uromodulin Secretion By Activating PKA (Protein Kinase A). Hypertension. 2021 Jun;77(6):1953-1963. doi: 10.1161/HYPERTENSIONAHA.121.17127.

Turner M, Staplin N. UMOD-ulating CKD risk: untangling the relationship between urinary uromodulin, blood pressure, and kidney disease. Kidney Int. 2021 Dec;100(6):1168-1170. doi: 10.1016/j.kint.2021.09.019.

Singh G, Gohh R, Clark D, et al. Vignette-Based Reflections to Inform Genetic Testing Policies in Living Kidney Donors. Genes (Basel). 2022 Mar 26;13(4):592. doi: 10.3390/genes13040592.

Shen F, Liu M, Pei F, Yu L, Yang X. Role of uromodulin and complement activation in the progression of kidney disease. Oncol Lett. 2021 Dec;22(6):829. doi: 10.3892/ol.2021.13090.

Yu L, Pei F, Sun Q, et al. Uromodulin aggravates renal tubulointerstitial injury through activation of the complement pathway in rats. J Cell Physiol. 2021 Jul;236(7):5012-5021. doi: 10.1002/jcp.30208.

Bai L, Xie Q, Xia M, et al. The importance of sialic acid, pH and ion concentration on the interaction of uromodulin and complement factor H. J Cell Mol Med. 2021 May;25(9):4316-4325. doi: 10.1111/jcmm.16492.

Stsiapanava A, Xu C, Nishio S, et al. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat Struct Mol Biol. 2022 Mar;29(3):190-193. doi: 10.1038/s41594-022-00729-3.

Micanovic R, LaFavers KA, Patidar KR, et al. The kidney releases a nonpolymerizing form of uromodulin in the urine and circulation that retains the external hydrophobic patch domain. Am J Physiol Renal Physiol. 2022 Apr 1;322(4):F403-F418. doi: 10.1152/ajprenal.00322.2021.

Abdelsalam M, Motawea M, Kyrillos F, Abdel-Razik A, Zaki MES, Abdel-Wahab A. Study of Uromodulin Gene Polymorphism in Egyptian Patients with End-Stage Renal Disease. Saudi J Kidney Dis Transpl. 2021 Jan-Feb;32(1):157-162. doi: 10.4103/1319-2442.318517.

Mansour SG, Liu C, Jia Y, et al. Uromodulin to Osteopontin Ratio in Deceased Donor Urine Is Associated With Kidney Graft Outcomes. Transplantation. 2021 Apr 1;105(4):876-885. doi: 10.1097/TP.0000000000003299.

Usui R, Ogawa T, Takahashi H, et al. Serum uromodulin is a novel renal function marker in the Japanese population. Clin Exp Nephrol. 2021 Jan;25(1):28-36. doi: 10.1007/s10157-020-01964-y.

Ponte B, Sadler MC, Olinger E, et al. Mendelian randomization to assess causality between uromodulin, blood pressure and chronic kidney disease. Kidney Int. 2021 Dec;100(6):1282-1291. doi: 10.1016/j.kint.2021.08.032.

Enko D, Meinitzer A, Scherberich JE, et al. Individual uromodulin serum concentration is independent of glomerular filtration rate in healthy kidney donors. Clin Chem Lab Med. 2020 Oct 13;59(3):563-570. doi: 10.1515/cclm-2020-0894.

Cansever HN, Sari F, Cevikol C, Cetinkaya R, Süleymanlar G, Ersoy F. Serum uromodulin levels, MR imaging findings, and their relationship with eGFR-based CKD staging in ADPKD patients. Int Urol Nephrol. 2021 Jul;53(7):1383-1389. doi: 10.1007/s11255-020-02730-5.

Jie C, Yi-Ying Y, Miao C. Correlation of serum uromodulin levels with renal fibrosis and renal function progression in patients with CKD. Pak J Pharm Sci. 2021 Nov;34(6(Special)):2417-2422.

Yazdani B, Delgado GE, Scharnagl H, et al. Combined Use of Serum Uromodulin and eGFR to Estimate Mortality Risk. Front Med (Lausanne). 2021 Sep 8;8:723546. doi: 10.3389/fmed.2021.723546.

Then C, Herder C, Thorand B, et al; KORA-Study Group. Association of serum uromodulin with adipokines in dependence of type 2 diabetes. Cytokine. 2022 Feb;150:155786. doi: 10.1016/j.cyto.2021.155786.

LaFavers K. Disruption of Kidney-Immune System Crosstalk in Sepsis with Acute Kidney Injury: Lessons Learned from Animal Models and Their Application to Human Health. Int J Mol Sci. 2022 Feb 1;23(3):1702. doi: 10.3390/ijms23031702.

Jain RB, Ducatman A. Associations between the concentrations of α-klotho and selected perfluoroalkyl substances in the presence of eGFR based kidney function and albuminuria: Data for US adults aged 40-79 years. Sci Total Environ. 2022 May 17:155994. doi: 10.1016/j.scitotenv.2022.155994.

Močnik M, Marčun Varda N. Current Knowledge of Selected Cardiovascular Biomarkers in Pediatrics: Kidney Injury Molecule-1, Salusin-α and -β, Uromodulin, and Adropin. Children (Basel). 2022 Jan 13;9(1):102. doi: 10.3390/children9010102.

Ray SK, Masarkar N, Mukherjee S. Implications of Klotho Protein for Managing Kidney Disease - an Emerging Role in Therapeutics and Molecular Medicine. Curr Mol Med. 2021;21(6):484-494. doi: 10.2174/1566524020666201120143313.

Noonin C, Peerapen P, Yoodee S, Kapincharanon C, Kanlaya R, Thongboonkerd V. Systematic analysis of modulating activities of native human urinary Tamm-Horsfall protein on calcium oxalate crystallization, growth, aggregation, crystal-cell adhesion and invasion through extracellular matrix. Chem Biol Interact. 2022 Apr 25;357:109879. doi: 10.1016/j.cbi.2022.109879.

Hasan FT, Mohey MA. Association of genetic polymorphism and expression of UMOD gene and chronic kidney disease. Wiad Lek. 2021;74(9 cz 2):2297-2300.

Yang Y, Hong S, Li C, et al S. Proteomic analysis reveals some common proteins in the kidney stone matrix. PeerJ. 2021 Jul 27;9:e11872. doi: 10.7717/peerj.11872.

Wang Y, Du MF, Yao Set, al. Associations of Serum Uromodulin and Its Genetic Variants With Blood Pressure and Hypertension in Chinese Adults. Front Cardiovasc Med. 2021 Nov 17;8:710023. doi: 10.3389/fcvm.2021.710023.

Du MF, Yao S, Zou T, et al. Associations of plasma uromodulin and genetic variants with blood pressure responses to dietary salt interventions. J Clin Hypertens (Greenwich). 2021 Oct;23(10):1897-1906. doi: 10.1111/jch.14347.

Boder P, Mary S, Mark PB, et al. Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and hypertension. J Hypertens. 2021 Aug 1;39(8):1490-1504. doi: 10.1097/HJH.0000000000002861.

Utami SB, Endo R, Hamada T, et al. Hsp70 promotes maturation of uromodulin mutants that cause familial juvenile hyperuricemic nephropathy and suppresses cellular damage. Clin Exp Nephrol. 2022 Jun;26(6):522-529. doi: 10.1007/s10157-022-02196-y.

Shamam YM, Hashmi MF. Autosomal Dominant Tubulointerstitial Kidney Disease. 2022 Apr 16. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan–.

Bleyer AJ, Wolf MT, Kidd KO, Zivna M, Kmoch S. Autosomal dominant tubulointerstitial kidney disease: more than just HNF1β. Pediatr Nephrol. 2022 May;37(5):933-946. doi: 10.1007/s00467-021-05118-4.

Wang D, Qiu Y, Fan J, et al. Upregulation of C/EBP Homologous Protein induced by ER Stress Mediates Epithelial to Myofibroblast Transformation in ADTKD-UMOD. Int J Med Sci. 2022 Jan 24;19(2):364-376. doi: 10.7150/ijms.65036.

Schaeffer C, Devuyst O, Rampoldi L. Uromodulin: Roles in Health and Disease. Annu Rev Physiol. 2021 Feb 10;83:477-501. doi: 10.1146/annurev-physiol-031620-092817.

Li Y, Cheng Y, Consolato F, et al. Genome-wide studies reveal factors associated with circulating uromodulin and its relations with complex diseases. JCI Insight. 2022 Apr 21:e157035. doi: 10.1172/jci.insight.157035.

Beenken A, Al-Awqati Q. Uromodulin fights UTI with sugars. Kidney Int. 2021 May;99(5):1057-1059. doi: 10.1016/j.kint.2020.12.035.

Li H, Kostel SA, DiMartino SE, Hashemi Gheinani A, Froehlich JW, Lee RS. Uromodulin Isolation and Its N-Glycosylation Analysis by NanoLC-MS/MS. J Proteome Res. 2021 May 7;20(5):2662-2672. doi: 10.1021/acs.jproteome.0c01053.

Patabandige MW, Go EP, Desaire H. Clinically Viable Assay for Monitoring Uromodulin Glycosylation. J Am Soc Mass Spectrom. 2021 Feb 3;32(2):436-443. doi: 10.1021/jasms.0c00317.

Liu Q, Li S, Yu L, Yin X, Liu X, Ye J, Lu G. CCL5 Suppresses Klotho Expression via p-STAT3/DNA Methyltransferase1-Mediated Promoter Hypermethylation. Front Physiol. 2022 Mar 1;13:856088. doi: 10.3389/fphys.2022.856088.

Gupta M, Orozco G, Rao M, Gedaly R, Malluche HH, Neyra JA. The Role of Alterations in Alpha-Klotho and FGF-23 in Kidney Transplantation and Kidney Donation. Front Med (Lausanne). 2022 May 6;9:803016. doi: 10.3389/fmed.2022.803016.

Wu SE, Chen WL. Soluble klotho as an effective biomarker to characterize inflammatory states. Ann Med. 2022 Dec;54(1):1520-1529. doi: 10.1080/07853890.2022.2077428..

Jin D, Jia M, Xie Y, Lin L, Qiu H, Lu G. Impact of klotho on the expression of SRGAP2a in podocytes in diabetic nephropathy. BMC Nephrol. 2022 Apr 18;23(1):151. doi: 10.1186/s12882-022-02765-z.

Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Klotho in kidney diseases: A crosstalk between the renin-angiotensin system and endoplasmic reticulum stress. Nephrol Dial Transplant. 2021 Nov 26:gfab340. doi: 10.1093/ndt/gfab340..

Nesterova AA, Glinka EYu, Tyurenkov IN, Perfilova VN. Protein Klotho – universal regulator of physiological processes in the organism. Successes of physiological sciences. 2020;51;(2):88-104. doi: 10.31857/S0301179820020083.

Li S, Kong J, Yu L, Liu Q. Abnormally decreased renal Klotho is linked to endoplasmic reticulum-associated degradation in mice. Int J Med Sci. 2022 Jan 9;19(2):321-330. doi: 10.7150/ijms.68137.

Ciardullo S, Perseghin G. Soluble α-Klotho levels, glycemic control and renal function in US adults with type 2 diabetes. Acta Diabetol. 2022 Jun;59(6):803-809. doi: 10.1007/s00592-022-01865-4.

Hu MC, Moe OW. Phosphate and Cellular Senescence. Adv Exp Med Biol. 2022;1362:55-72. doi: 10.1007/978-3-030-91623-7_7.

Du C, Wang X, Wu Y, et al. Renal Klotho and inorganic phosphate are extrinsic factors that antagonistically regulate hematopoietic stem cell maintenance. Cell Rep. 2022 Feb 15;38(7):110392. doi: 10.1016/j.celrep.2022.110392.

Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne). 2020 Aug 27;11:560. doi: 10.3389/fendo.2020.00560.

Zhao M, Murakami S, Matsumaru D, Kawauchi T, Nabeshima YI, Motohashi H. NRF2 pathway activation attenuates ageing-related renal phenotypes due to α-klotho deficiency. J Biochem. 2022 May 11;171(5):579-589. doi: 10.1093/jb/mvac014.

Lehtihet M, Stephanou C, Börjesson A, Bhuiyan H, Pohanka A, Ekström L. Studies of IGF-I and Klotho Protein in Relation to Anabolic-Androgenic Steroid and Growth Hormone Administrations. Front Sports Act Living. 2022 Mar 31;4:829940. doi: 10.3389/fspor.2022.829940.

Desbiens LC, Sidibé A, Ung RV, Mac-Way F. FGF23-Klotho Axis and Fractures in Patients Without and With Early CKD: A Case-Cohort Analysis of CARTaGENE. J Clin Endocrinol Metab. 2022 May 17;107(6):e2502-e2512. doi: 10.1210/clinem/dgac071.

Wu Q, Fan W, Zhong X, Zhang L, Niu J, Gu Y. Klotho/FGF23 and Wnt in SHPT associated with CKD via regulating miR-29a. Am J Transl Res. 2022 Feb 15;14(2):876-887.

Isakova T, Yanucil C, Faul C. A Klotho-Derived Peptide as a Possible Novel Drug to Prevent Kidney Fibrosis. Am J Kidney Dis. 2022 Apr 22:S0272-6386(22)00620-5. doi: 10.1053/j.ajkd.2022.03.006.

Valiño-Rivas L, Cuarental L, Ceballos MI, et al. Growth differentiation factor-15 preserves Klotho expression in acute kidney injury and kidney fibrosis. Kidney Int. 2022 Jun;101(6):1200-1215. doi: 10.1016/j.kint.2022.02.028.

Rudloff S, Jahnen-Dechent W, Huynh-Do U. Tissue chaperoning-the expanded functions of fetuin-A beyond inhibition of systemic calcification. Pflugers Arch. 2022 Apr 11:1–14. doi: 10.1007/s00424-022-02688-6.

Icer MA, Yıldıran H. Effects of fetuin-A with diverse functions and multiple mechanisms on human health. Clin Biochem. 2021 Feb;88:1-10. doi: 10.1016/j.clinbiochem.2020.11.004.

Bassey PE, Numthavaj P, Rattanasiri S, et al. Causal association pathways between fetuin-A and kidney function: a mediation analysis. J Int Med Res. 2022 Apr;50(4):3000605221082874. doi: 10.1177/03000605221082874.

Magalhães P, Zürbig P, Mischak H, Schleicher E. Urinary fetuin-A peptides as a new marker for impaired kidney function in patients with type 2 diabetes. Clin Kidney J. 2020 Oct 23;14(1):269-276. doi: 10.1093/ckj/sfaa176.

Kovářová M, Kalbacher H, Peter A, et al. Detection and Characterization of Phosphorylation, Glycosylation, and Fatty Acid Bound to Fetuin A in Human Blood. J Clin Med. 2021 Jan 22;10(3):411. doi: 10.3390/jcm10030411.

Umapathy D, Subramanyam PV, Krishnamoorthy E, Viswanathan V, Ramkumar KM. Association of Fetuin-A with Thr256Ser exon polymorphism of α2-Heremans Schmid Glycoprotein (AHSG) gene in type 2 diabetic patients with overt nephropathy. J Diabetes Complications. 2022 Jan;36(1):108074. doi: 10.1016/j.jdiacomp.2021.108074.

Jirak P, Stechemesser L, Moré E, et al. Clinical implications of fetuin-A. Adv Clin Chem. 2019;89:79-130. doi: 10.1016/bs.acc.2018.12.003.

Birukov A, Polemiti E, Jäger S, Stefan N, Schulze MB. Fetuin-A and risk of diabetes-related vascular complications: a prospective study. Cardiovasc Diabetol. 2022 Jan 8;21(1):6. doi: 10.1186/s12933-021-01439-8.

Zhou Z, Chen H, Sun M, Jin H, Ju H. Fetuin-A to adiponectin ratio is an independent indicator of subclinical atherosclerosis in patients with newly diagnosed type 2 diabetes mellitus. J Diabetes Complications. 2022 Jan;36(1):108102. doi: 10.1016/j.jdiacomp.2021.108102.

Kothari V, Babu JR, Mathews ST. AMP activated kinase negatively regulates hepatic Fetuin-A via p38 MAPK-C/EBPβ/E3 Ubiquitin Ligase Signaling pathway. PLoS One. 2022 May 6;17(5):e0266472. doi: 10.1371/journal.pone.0266472.

Luís C, Soares R, Baylina P, Fernandes R. Underestimated Prediabetic Biomarkers: Are We Blind to Their Strategy? Front Endocrinol (Lausanne). 2022 Mar 7;13:805837. doi: 10.3389/fendo.2022.805837.

Ahn MB, Kim SK, Kim SH,. Clinical Significance of the Fetuin-A-to-Adiponectin Ratio in Obese Children and Adolescents with Diabetes Mellitus. Children (Basel). 2021 Dec 8;8(12):1155. doi: 10.3390/children8121155.

Harbuwono DS, Sazli BI, Kurniawan F, Darmowidjojo B, Koesnoe S, Tahapary DL. The impact of Ramadan fasting on Fetuin-A level in type 2 diabetes mellitus. Heliyon. 2021 May 15;7(5):e06773. doi: 10.1016/j.heliyon.2021.e06773.

Lőrincz H, Csige I, Harangi M, et al. Low Levels of Serum Fetuin-A and Retinol-Binding Protein 4 Correlate with Lipoprotein Subfractions in Morbid Obese and Lean Non-Diabetic Subjects. Life (Basel). 2021 Aug 27;11(9):881. doi: 10.3390/life11090881.

Susairaj P, Snehalatha C, Nanditha A, et al. Analysis of an Indian diabetes prevention programme on association of adipokines and a hepatokine with incident diabetes. Sci Rep. 2021 Oct 13;11(1):20327. doi: 10.1038/s41598-021-99784-x.

Högstedt A, Farnebo S, Tesselaar E, Ghafouri B. Investigation of proteins important for microcirculation using in vivo microdialysis after glucose provocation: a proteomic study. Sci Rep. 2021 Sep 27;11(1):19093. doi: 10.1038/s41598-021-98672-8.

Khan SR, Canales BK, Dominguez-Gutierrez PR. Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol. 2021 Jun;17(6):417-433. doi: 10.1038/s41581-020-00392-1.

Chattopadhyay D, Das S, Guria S, Basu S, Mukherjee S. Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway. Biochem J. 2021 Nov 26;478(22):4027-4043. doi: 10.1042/BCJ20210442.

Ghadimi M, Foroughi F, Hashemipour S, et al. Decreased insulin resistance in diabetic patients by influencing Sirtuin1 and Fetuin-A following supplementation with ellagic acid: a randomized controlled trial. Diabetol Metab Syndr. 2021 Feb 5;13(1):16. doi: 10.1186/s13098-021-00633-8.

Werida RH, Abou-Madawy S, Abdelsalam M, Helmy MW. Omega 3 fatty acids effect on the vascular calcification biomarkers fetuin A and osteoprotegerin in hemodialysis patients. Clin Exp Med. 2022 May;22(2):301-310. doi: 10.1007/s10238-021-00740-w.

Anzai F, Karasawa T, Komada T, et al. Calciprotein Particles Induce IL-1β/α-Mediated Inflammation through NLRP3 Inflammasome-Dependent and -Independent Mechanisms. Immunohorizons. 2021 Jul 29;5(7):602-614. doi: 10.4049/immunohorizons.2100066.

Chen W, Fitzpatrick J, Monroy-Trujillo JM, et al. Associations of Serum Calciprotein Particle Size and Transformation Time With Arterial Calcification, Arterial Stiffness, and Mortality in Incident Hemodialysis Patients. Am J Kidney Dis. 2021 Mar;77(3):346-354. doi: 10.1053/j.ajkd.2020.05.031.

Janus SE, Hajjari J, Chami T, et al. Multi-Variable Biomarker Approach in Identifying Incident Heart Failure in Chronic Kidney Disease Results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Eur J Heart Fail. 2022 May 19. doi: 10.1002/ejhf.2543.

Tiong MK, Smith ER, Pascoe EM, et al. Effect of lanthanum carbonate on serum calciprotein particles in patients with stage 3-4 CKD - results from a placebo-controlled randomised trial. Nephrol Dial Transplant. 2022 Feb 25:gfac043. doi: 10.1093/ndt/gfac043.

Sevinc C, Yilmaz G, Ustundag S. The relationship between calcification inhibitor levels in chronic kidney disease and the development of atherosclerosis. Ren Fail. 2021 Dec;43(1):1349-1358. doi: 10.1080/0886022X.2021.1969248.

Kuro-O M. Klotho and calciprotein particles as therapeutic targets against accelerated ageing. Clin Sci (Lond). 2021 Aug 13;135(15):1915-1927. doi: 10.1042/CS20201453.

Cui Z, Li Y, Liu G, Jiang Y. miR-103a-3p Silencing Ameliorates Calcium Oxalate Deposition in Rat Kidney by Activating the UMOD/TRPV5 Axis. Dis Markers. 2022 Feb 23;2022:2602717. doi: 10.1155/2022/2602717.

Poloczek J, Kazura W, Kwaśnicka E, Gumprecht J, Jochem J, Stygar D. Effects of Bariatric Surgeries on Fetuin-A, Selenoprotein P, Angiopoietin-Like Protein 6, and Fibroblast Growth Factor 21 Concentration. J Diabetes Res. 2021 Aug 6;2021:5527107. doi: 10.1155/2021/5527107.

Koeppert S, Ghallab A, Peglow S, et al. Live Imaging of Calciprotein Particle Clearance and Receptor Mediated Uptake: Role of Calciprotein Monomers. Front Cell Dev Biol. 2021 Apr 29;9:633925. doi: 10.3389/fcell.2021.633925.

Alshahawey M, El Borolossy R, El Wakeel L, Elsaid T, Sabri NA. The impact of cholecalciferol on markers of vascular calcification in hemodialysis patients: A randomized placebo controlled study. Nutr Metab Cardiovasc Dis. 2021 Feb 8;31(2):626-633. doi: 10.1016/j.numecd.2020.09.014.

Tiong MK, Krishnasamy R, Smith ER, et al. Effect of a medium cut-off dialyzer on protein-bound uremic toxins and mineral metabolism markers in patients on hemodialysis. Hemodial Int. 2021 Mar 28. doi: 10.1111/hdi.12924.

Werida RH, Abou-Madawy S, Abdelsalam M, Helmy MW. Omega 3 fatty acids effect on the vascular calcification biomarkers fetuin A and osteoprotegerin in hemodialysis patients. Clin Exp Med. 2022 May;22(2):301-310. doi: 10.1007/s10238-021-00740-w.

Roca-Tey R, Ramírez de Arellano M, González-Oliva JC, et al. Is fetuin-A a biomarker of dialysis access dysfunction? J Vasc Access. 2021 Jul 29:11297298211035846. doi: 10.1177/11297298211035846.

Kuro-O M. Phosphate as a Pathogen of Arteriosclerosis and Aging. J Atheroscler Thromb. 2021 Mar 1;28(3):203-213. doi: 10.5551/jat.RV17045.

Fernández P, Douthat W, Castellano M, et al. Biomarkers of bone and mineral disorders (FGF-23, fetuin-A) and vascular calcification scores as predictive tools for cardiovascular death in dialysis patients, at 10 years of follow-up. Medicina (B Aires). 2021;81(2):191-197. English.

Lin X, Zhu T, Xu F, et al. Plasma Exosomes Derived From Patients With End-Stage Renal Disease and Renal Transplant Recipients Have Different Effects on Vascular Calcification. Front Cell Dev Biol. 2021 Jan 28;8:618228. doi: 10.3389/fcell.2020.618228.

Düsing P, Zietzer A, Goody PR, et al. Vascular pathologies in chronic kidney disease: pathophysiological mechanisms and novel therapeutic approaches. J Mol Med (Berl). 2021 Mar;99(3):335-348. doi: 10.1007/s00109-021-02037-7.

Chou PR, Wu PY, Wu PH, et al. Investigation of the Relationship between Cardiovascular Biomarkers and Brachial-Ankle Pulse Wave Velocity in Hemodialysis Patients. J Pers Med. 2022 Apr 15;12(4):636. doi: 10.3390/jpm12040636.

Tiong MK, Cai MMX, Toussaint ND, Tan SJ, Pasch A, Smith ER. Effect of nutritional calcium and phosphate loading on calciprotein particle kinetics in adults with normal and impaired kidney function. Sci Rep. 2022 May 5;12(1):7358. doi: 10.1038/s41598-022-11065-3.

Wu PY, Lee SY, Chang KV, Chao CT, Huang JW. Gender-Related Differences in Chronic Kidney Disease-Associated Vascular Calcification Risk and Potential Risk Mediators: A Scoping Review. Healthcare (Basel). 2021 Aug 1;9(8):979. doi: 10.3390/healthcare9080979.

Mohammed SK, Taha EM, Muhi SA. A case-control study to determination FBXW7 and Fetuin-A levels in patients with type 2 diabetes in Iraq. J Diabetes Metab Disord. 2021 Jan 21;20(1):237-243. doi: 10.1007/s40200-021-00738-x.

Uedono H, Mori K, Ochi A, et al. Effects of fetuin-A-containing calciprotein particles on posttranslational modifications of fetuin-A in HepG2 cells. Sci Rep. 2021 Apr 5;11(1):7486. doi: 10.1038/s41598-021-86881-0.

Piwkowska A, Zdrojewski Ł, Heleniak Z, Dębska-Ślizień A. Novel Markers in Diabetic Kidney Disease-Current State and Perspectives. Diagnostics (Basel). 2022 May 11;12(5):1205. doi: 10.3390/diagnostics12051205.

Published

2022-07-13

How to Cite

Denova, L. (2022). The value of proteomic studies of the latest markers of kidney damage in the urine to assess the course, progression and complications in patients with CKD. KIDNEYS, 11(2), 68–80. https://doi.org/10.22141/2307-1257.11.2.2022.363

Issue

Section

Guest Articles