Influence of oxidative, carbonyl, and nitrosative stresses on the course of chronic kidney disease (analytical review)

Authors

DOI:

https://doi.org/10.22141/2307-1257.11.1.2022.360

Keywords:

oxidative stress, nitrosative stress, carboxyl stress, chronic kidney disease, diabetic nephropathy, reactive oxygen species, hydrogen peroxide, superoxide dismutase, catalase, review

Abstract

Oxidative stress is a phenomenon caused by an imbalance of peroxide homeostasis. The concept of oxidative stress was introduced in 1985 and has a clear connection with redox chemistry. The article provides a detailed description of molecular redox switches that control the response to oxidative stress. Four levels of protection of the cell by enzymatic antioxidants from the action of reactive oxygen species are described. It has been shown that antioxidant enzymes play a major role in antioxidant protection rather than low molecular weight antioxidant compounds. Four stages of lipid peroxidation are considered. Oxidative stress plays an important role in the pathogenesis of chronic kidney disease. Uraemia increases oxidative stress. Mitochondrial dysfunction is the most important cause of oxidative stress in acute and chronic kidney disease. The effect of molecular stress on the kidneys and the course of chronic kidney disease is described. Some information is presented in the form of tables for the readers’ convenience.

Downloads

Download data is not yet available.

References

Oksenyuk OS, Kalmykova YuA, Smirnova OB, Pasechnik DG. The role of oxidative stress in the development of chronic kidney disease and methods of its assessment. Zurnal fund med biol. 2016;(1):15-24. (in Russian).

Karbyshev MS, Abdullaev ShP, authors; Shestopalov AV, editor. Biokhimiia oksidativnogo stressa: uchebno-metodicheskoe posobie [Biochemistry of oxidative stress: a study guide]. Moscow; 2018. 60 p. (in Russian).

Chu Y, Lan RS, Huang R, et al. Glutathione peroxidase-1 overexpression reduces oxidative stress, and improves pathology and proteome remodeling in the kidneys of old mice. Aging Cell. 2020 Jun;19(6):e13154. doi:10.1111/acel.13154.

Stokman G, Kors L, Bakker PJ, et al. NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J Exp Med. 2017 Aug 7;214(8):2405-2420. doi:10.1084/jem.20161031.

Seraphim DCC, Punaro GR, Fernandes TO, Ginoza M, Lopes GS, Higa EMS. Assessment of fructose overload in the metabolic profile and oxidative/nitrosative stress in the kidney of senescent female rats. Exp Gerontol. 2017 Dec 1;99:53-60. doi:10.1016/j.exger.2017.09.011.

Csiszar A, Toth J, Peti-Peterdi J, Ungvari Z. The aging kidney: role of endothelial oxidative stress and inflammation. Acta Physiol Hung. 2007 Mar;94(1-2):107-115. doi:10.1556/APhysiol.94.2007.1-2.10.

Hirakawa Y, Inagi R. Glycative Stress and Its Defense Machinery Glyoxalase 1 in Renal Pathogenesis. Int J Mol Sci. 2017 Jan 17;18(1):174. doi:10.3390/ijms18010174.

Melchioretto EF, Zeni M, Veronez DADL, et al. Stereological study and analysis of oxidative stress during renal aging in rats. Acta Cir Bras. 2020 Dec 18;35(11):e351106. doi:10.1590/ACTA351106.

Net'ukhaylo LG, Kharchenko SV. Reactive oxygen. Young Scientist. 2014;(9):131-135. (in Ukrainian).

Kuma A, Mafune K, Uchino B, Ochiai Y, Enta K, Kato A. Alteration of normal level of serum urate may contribute to decrease in estimated glomerular filtration rate decline in healthy Japanese men. Ren Fail. 2021 Dec;43(1):1408-1415. doi:10.1080/0886022X.2021.1988969.

Ostapchenko LI, Kompanec IV, Skopchenko OV, Synel'nyk TB, Kravchenko OO, Beregovyj SM. Biohimija: praktykum [Biochemistry: practical work]. Kyiv; 2018. 296 p. (in Ukrainian).

Bakulina LS, Konstantinov DP, Kurpiakova AF, et al., authors; Khurtsilava OG, Pluzhnikov NN, Nakatis IaA, editor. Oksidativnyi stress i vospalenie: patogeneticheskoe partnerstvo: monografiia [Oxidative stress and inflammation: pathogenetic partnership: monograph]. SPb; 2012. 340 p. (in Russian).

Semchishin GM, Lushchak VI. Oxidative stress and control of catalase activity in Escherichia coli. Ukrainian Biochemical Journal. 2004;76(2):31-42. (in Ukrainian).

Ghosh M, Das J, Sil PC. D(+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-κB and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, mangiferin. Free Radic Res. 2012 Feb;46(2):116-132. doi:10.3109/10715762.2011.644240.

Han Q, Zhang J, Sun Q, Xu Y, Teng X. Oxidative stress and mitochondrial dysfunction involved in ammonia-induced nephrocyte necroptosis in chickens. Ecotoxicol Environ Saf. 2020 Oct 15;203:110974. doi:10.1016/j.ecoenv.2020.110974.

Mattace Raso G, Simeoli R, Russo R, et al. N-Palmitoylethanolamide protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress. Pharmacol Res. 2013 Oct;76:67-76. doi:10.1016/j.phrs.2013.07.007.

Aoki K, Yanazawa K, Tokinoya K, et al. Renalase is localized to the small intestine crypt and expressed upon the activation of NF-κB p65 in mice model of fasting-induced oxidative stress. Life Sci. 2021 Feb 15;267:118904. doi:10.1016/j.lfs.2020.118904.

Zhang F, Lu Z, Wang F. Advances in the pathogenesis and prevention of contrast-induced nephropathy. Life Sci. 2020 Oct 15;259:118379. doi:10.1016/j.lfs.2020.118379.

Prosolenko KO. Indicators of oxidative stress and antioxidant activity in the comorbidity of non-alcoholic fatty liver disease and arterial hypertension. Ukrainian Journal of Medicine, Biology and Sports. 2020;5(23):179-186. doi:10.26693/jmbs05.01.179. (in Ukrainian).

Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018 Apr;93(4):803-813. doi:10.1016/j.kint.2017.11.034.

Ara C, Dirican A, Unal B, Bay Karabulut A, Piskin T. The effect of melatonin against FK506-induced renal oxidative stress in rats. Surg Innov. 2011 Mar;18(1):34-38. doi:10.1177/1553350610381088.

Suzuki D, Miyata T. Carbonyl stress in the pathogenesis of diabetic nephropathy. Intern Med. 1999 Apr;38(4):309-314. doi:10.2169/internalmedicine.38.309.

Fatih Aydın A, Küçükgergin C, Bingül İ, Doğan-Ekici I, Doğru-Abbasoğlu S, Uysal M. Effect of Carnosine on Renal Function, Oxidation and Glycation Products in the Kidneys of High-Fat Diet/Streptozotocin-Induced Diabetic Rats. Exp Clin Endocrinol Diabetes. 2017 May;125(5):282-289. doi:10.1055/s-0043-100117.

Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother. 2017 Mar;87:223-229. doi:10.1016/j.biopha.2016.12.105.

Dar MA, Khan AM, Raina R, Verma PK, Wani NM. Effect of bifenthrin on oxidative stress parameters in the liver, kidneys, and lungs of rats. Environ Sci Pollut Res Int. 2019 Mar;26(9):9365-9370. doi:10.1007/s11356-019-04362-4.

Farías JG, Zepeda AB, Calaf GM. Melatonin protects the heart, lungs and kidneys from oxidative stress under intermittent hypobaric hypoxia in rats. Biol Res. 2012;45(1):81-85. doi:10.4067/S0716-97602012000100011.

Othmène YB, Hamdi H, Salem IB, et al. Oxidative stress, DNA damage and apoptosis induced by tebuconazole in the kidney of male Wistar rat. Chem Biol Interact. 2020 Oct 1;330:109114. doi:10.1016/j.cbi.2020.109114.

Song YR, Kim JK, Lee HS, Kim SG, Choi EK. Serum levels of protein carbonyl, a marker of oxidative stress, are associated with overhydration, sarcopenia and mortality in hemodialysis patients. BMC Nephrol. 2020 Jul 16;21(1):281. doi:10.1186/s12882-020-01937-z.

Caimi G, Hopps E, Montana M, et al. Behaviour of carbonyl groups in several clinical conditions: Analysis of our survey. Clin Hemorheol Microcirc. 2020;74(3):299-313. doi:10.3233/CH-190689.

Colombo G, Reggiani F, Angelini C, et al. Plasma Protein Carbonyls as Biomarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. Oxid Med Cell Longev. 2020 Nov 24;2020:2975256. doi:10.1155/2020/2975256.

Mukhopadhyay P, Pan H, Rajesh M, et al. CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol. 2010 Jun;160(3):657-668. doi:10.1111/j.1476-5381.2010.00769.x.

Jia Y, Wang L, Zhao GY, Wang ZQ, Chen S, Chen G. Carbon monoxide inhibits the nuclear-cytoplasmic translocation of HMGB1 in an in vitro oxidative stress injury model of mouse renal tubular epithelial cells. J Huazhong Univ Sci Technolog Med Sci. 2016 Dec;36(6):791-795. doi:10.1007/s11596-016-1663-y.

Kumar A, Hammad A, Sharma AK, Mc-Cardle F, Rustom R, Christmas SE. Oxidative stress in kidney transplant biopsies. Exp Clin Transplant. 2015 Apr;13(Suppl 1):207-213.

Guzmán-Guillén R, Prieto AI, Vázquez CM, Vasconcelos V, Cameán AM. The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus). Aquat Toxicol. 2013 May 15;132-133:141-150. doi:10.1016/j.aquatox.2013.02.011.

Yan J, Wang D, Miao J, et al. Discrepant effects of α-endosulfan, β-endosulfan, and endosulfan sulfate on oxidative stress and energy metabolism in the livers and kidneys of mice. Chemosphere. 2018 Aug;205:223-233. doi:10.1016/j.chemosphere.2018.04.101.

Ishimoto Y, Tanaka T, Yoshida Y, Inagi R. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney. Clin Exp Pharmacol Physiol. 2018 Nov;45(11):1097-1105. doi:10.1111/1440-1681.13018.

Santos EB, Koff WJ, Grezzana Filho Tde J, et al. Oxidative stress evaluation of ischemia and reperfusion in kidneys under various degrees of hypothermia in rats. Acta Cir Bras. 2013 Aug;28(8):568-573. doi:10.1590/s0102-86502013000800003.

Hua W, Huang HZ, Tan LT, et al. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress. PLoS One. 2015 May 22;10(5):e0127507. doi:10.1371/journal.pone.0127507.

Ossani GP, Uceda AM, Acosta JM, et al. Role of Oxidative Stress in Lithium-Induced Nephropathy. Biol Trace Elem Res. 2019 Oct;191(2):412-418. doi:10.1007/s12011-018-1617-2.

Tanaka S, Sugiura Y, Saito H, et al. Sodium-glucose cotransporter 2 inhibition normalizes glucose metabolism and suppresses oxidative stress in the kidneys of diabetic mice. Kidney Int. 2018 Nov;94(5):912-925. doi:10.1016/j.kint.2018.04.025.

Dobrelia NB, Khromov AS. Diabetes mellitus and pulmonary circulation (part 1). Fiziologichnyi Zhurnal. 2019;65(2):97-107. doi:10.15407/fz65.02.097. (in Ukrainian).

Hara M, Torisu K, Tomita K, et al. Arginase 2 is a mediator of ischemia-reperfusion injury in the kidney through regulation of nitrosative stress. Kidney Int. 2020 Sep;98(3):673-685. doi:10.1016/j.kint.2020.03.032.

Punaro GR, Lima DY, Rodrigues AM, et al. Cupuaçu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clin Nutr. 2019 Feb;38(1):364-371. doi:10.1016/j.clnu.2017.12.016.

Pessoa EA, Convento MB, Castino B, et al. Beneficial Effects of Isoflavones in the Kidney of Obese Rats Are Mediated by PPAR-Gamma Expression. Nutrients. 2020 Jun 1;12(6):1624. doi:10.3390/nu12061624.

Sheehan D, Rainville LC, Tyther R, McDonagh B. Redox proteomics in study of kidney-associated hypertension: new insights to old diseases. Antioxid Redox Signal. 2012 Dec 1;17(11):1560-1570. doi:10.1089/ars.2012.4705.

Mohebbati R, Abbasnezhad A, Havakhah S, Mousavi M. The Effect of Nigella Sativa on Renal Oxidative Injury in Diabetic Rats. Saudi J Kidney Dis Transpl. 2020 Jul-Aug;31(4):775-786. doi:10.4103/1319-2442.292311.

Arany I, Hall S, Reed DK, Reed CT, Dixit M. Nicotine Enhances High-Fat Diet-Induced Oxidative Stress in the Kidney. Nicotine Tob Res. 2016 Jul;18(7):1628-1634. doi:10.1093/ntr/ntw029.

Ueno Y, Horio F, Uchida K, et al. Increase in oxidative stress in kidneys of diabetic Akita mice. Biosci Biotechnol Biochem. 2002 Apr;66(4):869-872. doi:10.1271/bbb.66.869.

Zharikov AYu, Filinova SO, Mazko ON, Makarova OG, Bobrov IP, Bryukhanov VM. The role of free radical oxidation in the kidneys in the nephroprotective action of eplerenone, a mineralocorticoid receptor antagonist, in experimental diabetes mellitus. Bulletin of Siberian Medicine. 2021;20(2):29-35. doi:10.20538/1682-0363-2021-2-29-35. (in Russian).

Nezu M, Suzuki N. Roles of Nrf2 in protecting the kidney from oxidative damage. Int J Mol Sci. 2020 Apr 22;21(8):2951. doi:10.3390/ijms21082951.

Su H, Wan C, Song A, Qiu Y, Xiong W, Zhang C. Oxidative stress and renal fibrosis: mechanisms and therapies. Adv Exp Med Biol. 2019;1165:585-604. doi:10.1007/978-981-13-8871-2_29.

Stryjak I, Warmuzińska N, Bogusiewicz J, Łuczykowski K, Bojko B. Monitoring of the influence of long-term oxidative stress and ischemia on the condition of kidneys using solid-phase microextraction chemical biopsy coupled with liquid chromatography-high-resolution mass spectrometry. J Sep Sci. 2020 May;43(9-10):1867-1878. doi:10.1002/jssc.202000032.

Zhang Y, Wang J, Liu X, et al. An Investigation Into the Effects of Long-Term 50-Hz Power-Frequency Electromagnetic Field Exposure on Hematogram, Blood Chemistry, Fibrosis, and Oxidant Stress Status in the Liver and the Kidney From Sprague-Dawley Rats. Bioelectromagnetics. 2020 Oct;41(7):511-525. doi:10.1002/bem.22291.

Martínez-Lara E, Peña A, Calahorra J, Cañuelo A, Siles E. Hydroxytyrosol decreases the oxidative and nitrosative stress levels and promotes angiogenesis through HIF-1 independent mechanisms in renal hypoxic cells. Food Funct. 2016 Jan;7(1):540-548. doi:10.1039/c5fo00928f.

Caliskan B, Guven A, Ozler M, et al. Ozone therapy prevents renal inflammation and fibrosis in a rat model of acute pyelonephritis. Scand J Clin Lab Invest. 2011 Oct;71(6):473-480. doi:10.3109/00365513.2011.587022.

Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel). 2020 Jul 24;9(8):659. doi:10.3390/antiox9080659.

Ivanova MD, Gozhenko AI, Crestanello T, Ivanov DD. Early Coaching to Increase Water Intake in CKD. Ann Nutr Metab. 2020;76(Suppl 1):69-70. doi:10.1159/000515276.

Downloads

Published

2022-05-24

How to Cite

Denova, L., & Ivanov, D. (2022). Influence of oxidative, carbonyl, and nitrosative stresses on the course of chronic kidney disease (analytical review). KIDNEYS, 11(1), 53–61. https://doi.org/10.22141/2307-1257.11.1.2022.360

Issue

Section

Reviews