The opportunity of stem cells application in kidney transplantation: clinical studies (review)

Authors

DOI:

https://doi.org/10.22141/2307-1257.10.4.2021.247897

Keywords:

kidney transplantation, stem cells, induction therapy, renal failure, literature review

Abstract

Kidney transplantation remains the optimal method of end-stage renal disease treatment, but the result of such ope­rations depends on the immune response of the recipient to the transplanted organ. Side effects of modern immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and increased risk of cancer, negatively affect the long-term results of transplantation. In recent years, studies of the properties and uses of stem cells have aroused considerable interest and expectations. The biological characteristics of stem cells, inclu­ding multi-row differentiation, self-guidance, paracrine effects, immunomodulation, ability to suppress the immune response against graft, have opened new horizons for their use in kidney transplantation, but according to different studies, the safety and effectiveness of stem cells clinical use remain controversial. The use of stem cells in animal models with renal failure shows better results in the postoperative period and provides an opportunity for clinical research in the context of creating alternative induction therapy in kidney transplantation. The preclinical efficiency of stem cells in the chronic renal failure model and renal allotransplantation in laboratory animals showed their unique potential to improve function and repair the damaged kidney. They also demonstrate immunosuppressive effects that realize in the inhibition of T-cell proliferation and dendritic cells maturation, the induction of Т-regulatory cells, which can improve the long-term results of kidney allotransplantation. This review summarizes the results of previous studies and is aimed to provide an objective point of view based on a comprehensive analysis of currently known advantages and disadvantages of stem cell therapy in kidney transplantation and highlights aspects that require further research.

Downloads

Download data is not yet available.

References

Coemans M, Süsal C, Döhler B, et al. Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney Int. 2018 Nov;94(5):964-973. doi:10.1016/j.kint.2018.05.018.

Justiz Vaillant AA, author; Mohseni M, editor. Chronic Transplantation Rejection. Treasure Island (FL): StatPearls Publishing; 2021.

Stoumpos S, Jardine AG, Mark PB. Cardiovascular morbidity and mortality after kidney transplantation. Transpl Int. 2015 Jan;28(1):10-21. doi:10.1111/tri.12413.

Tufton N, Ahmad S, Rolfe C, Rajkariar R, Byrne C, Chowdhury TA. New-onset diabetes after renal transplantation. Diabet Med. 2014 Nov;31(11):1284-1292. doi:10.1111/dme.12534.

Rama I, Grinyó JM. Malignancy after renal transplantation: the role of immunosuppression. Nat Rev Nephrol. 2010 Sep;6(9):511-519. doi:10.1038/nrneph.2010.102.

Kotton CN, Fishman JA. Viral infection in the renal transplant recipient. J Am Soc Nephrol. 2005 Jun;16(6):1758-1774. doi:10.1681/ASN.2004121113.

Tsai YF, Liu FC, Kuo CF, Chung TT, Yu HP. Graft outcomes following immunosuppressive therapy with different combinations in kidney transplant recipients: a nationwide cohort study. Ther Clin Risk Manag. 2018 Jun 12;14:1099-1110. doi:10.2147/TCRM.S164323.

Foley RN, Chen SC, Solid CA, Gilbertson DT, Collins AJ. Early mortality in patients starting dialysis appears to go unregistered. Kidney Int. 2014 Aug;86(2):392-398. doi:10.1038/ki.2014.15.

Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143-147. doi:10.1126/science.284.5411.143.

Divya MS, Roshin GE, Divya TS, et al. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther. 2012 Dec 19;3(6):57. doi:10.1186/scrt148.

Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317. doi:10.1080/14653240600855905.

Soloveva VV, Tazetdinova LG, Rizvanov AA. Vydelenie, kul'tivirovanie i biokhimicheskii analiz pervichnykh kletok cheloveka: uchebnoe posobie [Isolation, cultivation and biochemical analysis of primary human cells: a textbook]. Kazan: Kazan Federal University; 2018. 114 p. (in Russian).

Luz-Crawford P, Kurte M, Bravo-Alegría J, et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther. 2013 Jun 4;4(3):65. doi:10.1186/scrt216.

Chiesa S, Morbelli S, Morando S, et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17384-17389. doi:10.1073/pnas.1103650108.

Djouad F, Charbonnier LM, Bouffi C, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007 Aug;25(8):2025-2032. doi:10.1634/stemcells.2006-0548.

Lisianyi NI. Mesenchymal stem cells and immunological properties. Fiziologichnyi Zhurnal. 2013;59(3):126-134. (in Ukrainian).

Spaas JH, De Schauwer C, Cornillie P, Meyer E, Van Soom A, Van de Walle GR. Culture and characterisation of equine peripheral blood mesenchymal stromal cells. Vet J. 2013 Jan;195(1):107-113. doi:10.1016/j.tvjl.2012.05.006.

Lu Y, Liu J, Liu Y, et al. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function. Biochem Biophys Res Commun. 2015 Aug 21;464(2):541-547. doi:10.1016/j.bbrc.2015.07.002.

Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006 Jan 1;107(1):367-372. doi:10.1182/blood-2005-07-2657.

Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol. 2012 Sep 26;3:297. doi:10.3389/fimmu.2012.00297.

Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C. Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: biological properties and emerging clinical applications. Curr Stem Cell Res Ther. 2013 Mar;8(2):144-155. doi:10.2174/1574888x11308020005.

Babiichuk LA, Riazantsev VV, Zubova OL, Zubov PM. Hematopoietic stem cells of cord blood: new methods of isolation and cryopreservation. Transplantologiâ. 2007;9(1):13-15. (in Russian).

Zhang Z, Lin H, Shi M, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J Gastroenterol Hepatol. 2012 Mar;27(Suppl 2):112-120. doi:10.1111/j.1440-1746.2011.07024.x.

Jiang R, Han Z, Zhuo G, et al. Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med. 2011 Mar;5(1):94-100. doi:10.1007/s11684-011-0116-z.

Chambers DC, Enever D, Ilic N, et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 2014 Oct;19(7):1013-1018. doi:10.1111/resp.12343.

Perico N, Casiraghi F, Introna M, et al. Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clin J Am Soc Nephrol. 2011 Feb;6(2):412-422. doi:10.2215/CJN.04950610.

Tan J, Wu W, Xu X, et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012 Mar 21;307(11):1169-1177. doi:10.1001/jama.2012.316.

Ciancio G, Sageshima J, Akpinar E, et al. A randomized pilot study of donor stem cell infusion in living-related kidney transplant recipients receiving alemtuzumab. Transplantation. 2013 Nov 15;96(9):800-806. doi:10.1097/TP.0b013e3182a0f68c.

Erpicum P, Weekers L, Detry O, et al. Infusion of third-party mesenchymal stromal cells after kidney transplantation: a phase I-II, open-label, clinical study. Kidney Int. 2019 Mar;95(3):693-707. doi:10.1016/j.kint.2018.08.046.

Sun Q, Huang Z, Han F, et al. Allogeneic mesenchymal stem cells as induction therapy are safe and feasible in renal allografts: pilot results of a multicenter randomized controlled trial. J Transl Med. 2018 Mar 7;16(1):52. doi:10.1186/s12967-018-1422-x.

Perico N, Casiraghi F, Todeschini M, et al. Long-Term Clinical and Immunological Profile of Kidney Transplant Patients Given Mesenchymal Stromal Cell Immunotherapy. Front Immunol. 2018 Jun 14;9:1359. doi:10.3389/fimmu.2018.01359.

Wolbank S, Stadler G, Peterbauer A, et al. Telomerase immortalized human amnion- and adipose-derived mesenchymal stem cells: maintenance of differentiation and immunomodulatory characteristics. Tissue Eng Part A. 2009 Jul;15(7):1843-1854. doi:10.1089/ten.tea.2008.0205.

Parolini O, Alviano F, Bagnara GP, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008 Feb;26(2):300-311. doi:10.1634/stemcells.2007-0594.

Miki T. Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther. 2011 May 19;2(3):25. doi:10.1186/scrt66.

Published

2022-02-15

How to Cite

Voroniak, A., & Zograbyan, R. (2022). The opportunity of stem cells application in kidney transplantation: clinical studies (review). KIDNEYS, 10(4), 229–236. https://doi.org/10.22141/2307-1257.10.4.2021.247897

Issue

Section

Reviews