Autologous vein graft in living donor kidney transplant (case report)

Introduction
Chronic kidney disease remains a prevalent health concern, necessitating various therapeutic approaches including renal transplantation. Kidney transplantation stands as the gold standard for the management of end-stage renal disease, offering improved quality of life and enhanced survival rates compared to dialysis. Surgical interventions may sometimes present unique challenges. In such cases, alternative strategies are required to overcome anatomical limitations and ensure successful vascular reconstruction. Vascular complications contributing to renal dysfunction often demand innovative surgical solutions. The successful outcome of kidney transplantation is heavily reliant on meticulous surgical techniques, especially concerning vascular anastomosis, ensuring optimal blood supply to the transplanted kidney. However, surgical complexities may arise, particularly concerning vascular mismatch between the donor renal vein and the recipient’s external iliac vein. When the donor renal vein length is insufficient for direct anastomosis, alternative strategies become imperative to ensure adequate blood supply and optimal graft function. One such innovative approach involves the utilization of autologous saphenous grafting to bridge the vascular gap, offering a potential solution in such challenging scenarios. This case focuses on the surgical approach, procedural intricacies, postoperative outcomes, emphasizing the viability and effectiveness of innovative techniques in addressing anatomical challenges during kidney transplantation.

Case report
A 28-year-old male with chronic kidney disease who was on maintenance hemodialysis twice a week was prepared for kidney transplant surgery using a living kidney donor transplant, the donor being his mother. The renal vein was cut shorter than intended during the ongoing kidney procurement process from the living donor. However, the surgeons were certain that the recipient kidney would have complete vascularization upon anastomosis of blood vessels. Following the procedure, it became apparent that the small renal vein presented a challenge in creating an impeccable vascularization to ensure proper alignment and adequate blood flow to the transplanted kidney. Given the urgency of the patient’s condition and the necessity for an immediate intervention, autologous saphenous grafting was proposed as an alternative method to facilitate successful vascular anastomosis. Patient’s own saphenous vein was utilized to create a vascular conduit, allowing for a seamless connection between the donor renal vein and the recipient’s external iliac...
vein successfully restoring blood flow to the kidney. Careful attention was given to the appropriate sizing and preparation of the graft to ensure optimal blood flow and minimize the risk of complications. Post-transplant Doppler was done (Fig. 1, 2, 3).

Discussion

Chronic kidney disease remains a prevalent health concern, necessitating various therapeutic approaches including renal vein revascularization. Surgical intervention may present unique challenges. In such cases, alternative strategies are required to overcome anatomical limitations and ensure successful vascular reconstruction. Although uncommon, vascular damage after kidney transplantation might result in significant hemorrhage, graft loss, and limb ischemia. Efficient decision-making in excising the graft, flushing with cold preservation solution, and returning to the ice can preserve the kidney transplant and provide more time for a more accurate and controlled healing of the vascular lesion [4]. Vascular complications with various etiologies occur in 3–15% of patients receiving kidney transplantation. These include transplant renal artery stenosis, transplant renal artery or vein thrombosis, biopsy-induced vascular damage, pseudoaneurysm development and hematomas embolus causing renal infarction or dissections [2, 9]. Numerous renal veins with thin walls and tiny diameters can make it challenging to select the major drainage vein especially during right kidney transplant surgery. When the renal vein is inadequate in length, the branches are ligated and clipped, and one vein is extended to perform an anastomosis. Reconstructions generally involve an end-to-side anastomosis with the external iliac vein [10].

There are several ways to construct vascular anastomoses, including autogenous internal iliac artery bypass, polytetrafluoroethylene grafts, third-party vascular allografts, and saphenous vein grafts. An alternative blood supply to the transplanted kidney may be the internal iliac artery in certain circumstances of anatomic variation or an atheromatous external iliac artery. However, because there is a chance that using the internal iliac artery could compromise the pelvis’s distal blood supply, which could lead to impotence, sexual dysfunction, and buttock claudication, it is less frequently utilized [2]. This case demonstrates the importance of adaptable surgical methods in dealing with various anatomical variances that arise during kidney transplantation. In circumstances when typical vascular anastomosis techniques may not be feasible, or in managing complex vascular anatomy, the use of autologous saphenous vein grafts in renal transplantation offers an alternate and creative approach. Previous studies on autologous saphenous vein transplant renal artery repair have been reported and that has raised concerns about late consequences, including the development of pseudoaneurysms and stenosis [1, 3]. Miyuachi Y. et al. (2021) reported first case study of renal vein reconstruction using Y-shaped saphenous vein grafting, indicating an effective solution for treating anastomosis-related complications and getting a successful venous reconstruction [10]. The utilization of autologous saphenous grafting as an interposition graft between the renal vein and external iliac vein in this case of inadequate donor renal vein length represents a novel and effective approach in managing challenging vascular reconstructions in patients with chronic kidney disease. Further studies and long-term follow-ups are warranted to validate the durability and effectiveness of
this surgical approach in preserving renal function and mitigating the progression of chronic kidney disease in similar patient populations.

Acknowledgments. I wish to thank Parul Institute of Medical Science and Research, Parul Sevashram Hospital, Parul University for encouraging me to publish the manuscript.

References


Received 25.03.2024
Revised 29.04.2024
Accepted 30.04.2024