Precision diagnosis of lupus nephritis: opportunities and role of biomarkers

I.Yu. Golovach, Ye.D. Yehudina


The most common complication in patients with systemic lupus erythematosus is lupus nephritis (LN), a condition that can lead to end-stage kidney disease. In recent years, many serum and urine biomarkers, genetic studies have been proposed for the diagnosis of LN, but none of them entered into guidelines for clinical use. The majority of studies have been single-center with significant variability in cohorts, assays, and sample storage, leading to inconclusive results. It has become clear that no single biomarker is likely to be sufficient to diagnose LN, identify flares, and define the response to therapy and prognosis. A more likely scenario for future diagnostics is a panel of biomarkers for urine, serum, kidney tissue, and genetic biomarkers. The review summarizes the data on traditional and new serum, urinary and genetic biomar­kers, discusses the feasibility of their use in clinical practice and the possibility of implementation for a more accurate diagnosis of LN. Each “panel” of biomarkers will provide a unique understanding of the various clinical issues of disease development and progression. Thus, the genetic panel can determine the likelihood of nephritis in a patient with systemic lupus erythematosus and which inflammatory pathways will be involved in the LN development. A urine biomarker panel can help distinguish between inflammation and fibrosis, eliminating the need for repeated biopsies. A serum biomarker panel can identify nephritogenic autoantibodies that increase the number of exacerbations, cause their severity and worsen the response to treatment. A more systematic and focused approach to the study of biomarkers will allow precision diagnosis to become a reality for patients with LN.


systemic lupus erythematosus; lupus nephritis; kidneys; serum and urinary biomarkers; genetic biomarkers; complement system; acute kidney damage


Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011 Dec 1;365(22):2110-21. doi: 10.1056/NEJMra1100359.

Golovach IYu. Lupus nephritis: a modern treatment paradigm. Počki.2018;7(2):122-131. doi: 10.22141/2307-1257.7.2.2018.127399.

Sexton DJ, Reule S, Solid C, Chen SC, Collins AJ, Foley RN. ESRD from lupus nephritis in the United States, 1995-2010. Clin J Am Soc Nephrol. 2015 Feb 6;10(2):251-9. doi: 10.2215/CJN.02350314.

Trypilka SA, Golovach IYu, Diadyk EA. Lupus glomerulonephritis: at crossing of clinical and histological diagnosis. Praktikuûčij lìkar. 2018;7(4):17-24.

Kovalenko VM, Shuba NM, Bortkevych OP, Bіliavska YV. Systemic lupus erythematosus: pathogenetic characteristic of clinical manifestations, current diagnostic and therapeutic strategy. Ukrainian journal of rheumatology. 2010;(39):13-23. (in Ukrainian).

Parikh SV, Rovin BH. Current and Emerging Therapies for Lupus Nephritis. J Am Soc Nephrol. 2016 Oct;27(10):2929-2939. doi: 10.1681/ASN.2016040415.

Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89-95. doi: 10.1067/mcp.2001.113989.

Weening JJ, D'Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int. 2004;65(2):521-30. doi: 10.1111/j.1523-1755.2004.00443.x.

Yu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol. 2017 Aug;13(8):483-495. doi: 10.1038/nrneph.2017.85.

Bajema IM, Wilhelmus S, Alpers CE, et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018 Apr;93(4):789-796. doi: 10.1016/j.kint.2017.11.023.

Malvar A, Pirruccio P, Alberton V, et al. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol Dial Transplant. 2017 Aug 1;32(8):1338-1344. doi: 10.1093/ndt/gfv296.

De Rosa M, Azzato F, Toblli JE, et al. A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy. Kidney Int. 2018 Oct;94(4):788-794. doi: 10.1016/j.kint.2018.05.021.

Dall'Era M, Cisternas MG, Smilek DE, et al. Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus Nephritis cohort. Arthritis Rheumatol. 2015 May;67(5):1305-13. doi: 10.1002/art.39026.

Pisetsky DS. Anti-DNA antibodies - quintessential biomarkers of SLE. Nat Rev Rheumatol. 2016 Feb;12(2):102-10. doi: 10.1038/nrrheum.2015.151.

Olson SW, Lee JJ, Prince LK, et al. Elevated subclinical double-stranded DNA antibodies and future proliferative lupus nephritis. Clin J Am Soc Nephrol. 2013 Oct;8(10):1702-8. doi: 10.2215/CJN.01910213.

Matrat A, Veysseyre-Balter C, Trolliet P, et al. Simultaneous detection of anti-C1q and anti-double stranded DNA autoantibodies in lupus nephritis: predictive value for renal flares. Lupus. 2011 Jan;20(1):28-34. doi: 10.1177/0961203310379871.

Julkunen H, Ekblom-Kullberg S, Miettinen A. Nonrenal and renal activity of systemic lupus erythematosus: a comparison of two anti-C1q and five anti-dsDNA assays and complement C3 and C4. Rheumatol Int. 2012 Aug;32(8):2445-51. doi: 10.1007/s00296-011-1962-3.

Moroni G, Radice A, Giammarresi G, et al. Are laboratory tests useful for monitoring the activity of lupus nephritis? A 6-year prospective study in a cohort of 228 patients with lupus nephritis. Ann Rheum Dis. 2009 Feb;68(2):234-7. doi: 10.1136/ard.2008.094508.

Yung S, Chan TM. Anti-dsDNA antibodies and resident renal cells - Their putative roles in pathogenesis of renal lesions in lupus nephritis. Clin Immunol. 2017 Dec;185:40-50. doi: 10.1016/j.clim.2016.09.002.

Dong X, Zheng Z,Luo X, et al. Combined utilization of untimed single urine of MCP-1 and TWEAK as a potential indicator for proteinuria in lupus nephritis: A case-control study. Medicine (Baltimore). 2018 Apr;97(16):e0343. doi: 10.1097/MD.0000000000010343.

Bruschi M, Sinico RA, Moroni G, et al. Glomerular Autoimmune Multicomponents of Human Lupus Nephritis In Vivo: alpha-Enolase and Annexin AI. J Am Soc Nephrol. 2014 Nov;25(11):2483-98. doi: 10.1681/ASN.2013090987.

Yung S, Cheung KF, Zhang Q, Chan TM. Anti-dsDNA antibodies bind to mesangial annexin II in lupus nephritis. J Am Soc Nephrol. 2010 Nov;21(11):1912-27. doi: 10.1681/ASN.2009080805.

Caster DJ, Korte EA, Merchant ML, et al. Autoantibodies targeting glomerular annexin A2 identify patients with proliferative lupus nephritis. Proteomics Clin Appl. 2015 Dec;9(11-12):1012-20. doi: 10.1002/prca.201400175.

Cheung KF, Yung S, Chau MK, et al. Annexin II-binding immunoglobulins in patients with lupus nephritis and their correlation with disease manifestations. Clin Sci (Lond). 2017 Apr 25;131(8):653-671. doi: 10.1042/CS20160732.

Kim HJ, Hong YH, Kim YJ, et al. Anti-heparan sulfate antibody and functional loss of glomerular heparan sulfate proteoglycans in lupus nephritis. Lupus. 2017 Jul;26(8):815-824. doi: 10.1177/0961203316678674.

Olin AI, Morgelin M, Truedsson L, Sturfelt G, Bengtsson AA. Pathogenic mechanisms in lupus nephritis: Nucleosomes bind aberrant laminin β1 with high affinity and colocalize in the electrondense deposits. Arthritis Rheumatol. 2014 Feb;66(2):397-406. doi: 10.1002/art.38250.

Feng D, DuMontier C, Pollak MR. The role of alpha-actinin-4 in human kidney disease. Cell Biosci. 2015 Aug 18;5:44. doi: 10.1186/s13578-015-0036-8.

Zhao Z, Deocharan B, Scherer PE, Ozelius LJ, Putterman C. Differential binding of cross-reactive anti-DNA antibodies to mesangial cells: the role of alpha-actinin. J Immunol. 2006 Jun 15;176(12):7704-14.

Deocharan B, Zhou Z, Antar K, et al. Alpha-actinin immunization elicits anti-chromatin autoimmunity in nonautoimmune mice. J Immunol. 2007 Jul 15;179(2):1313-21.

Iaccarino L, Ghirardello A, Canova M, et al. Anti-annexins autoantibodies: their role as biomarkers of autoimmune diseases. Autoimmun Rev. 2011 Jul;10(9):553-8. doi: 10.1016/j.autrev.2011.04.007.

Bonanni A, Vaglio A, Bruschi M, et al. Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference. Autoimmun Rev. 2015 Aug;14(8):692-702. doi: 10.1016/j.autrev.2015.04.004.

Bharadwaj A, Bydoun M, Holloway R, Waisman D. Annexin A2 heterotetramer: structure and function. Int J Mol Sci. 2013 Mar 19;14(3):6259-305. doi: 10.3390/ijms14036259.

Rescher U, Ludwig C, Konietzko V, Kharitonenkov A, Gerke V. Tyrosine phosphorylation of annexin A2 regulates Rho-mediated actin rearrangement and cell adhesion. J Cell Sci. 2008 Jul 1;121(Pt 13):2177-85. doi: 10.1242/jcs.028415.

Canas F, Simonin L, Couturaud F, Renaudineau Y. Annexin A2 autoantibodies in thrombosis and autoimmune diseases. Thromb Res. 2015 Feb;135(2):226-30. doi: 10.1016/j.thromres.2014.11.034.

Diaz- Ramos A, Roig-Borrellas A, Garcia-Melero A, Lopez-Alemany R. α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol. 2012;2012:156795. doi: 10.1155/2012/156795.

Bruschi M, Carnevali ML, Murtas C, et al. Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: Alfa-enolase and borderline antigens. J Proteomics. 2011 Sep 6;74(10):2008-17. doi: 10.1016/j.jprot.2011.05.021.

Papayannopoulos V, Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009 Nov;30(11):513-21. doi: 10.1016/

Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009 Oct;5(10):e1000639. doi: 10.1371/journal.ppat.1000639.

Garcia-Romo GS, Caielli S, Vega B, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011 Mar 9;3(73):73ra20. doi: 10.1126/scitranslmed.3001201.

Leffler J, Martin M, Gullstrand B, et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012 Apr 1;188(7):3522-31. doi: 10.4049/jimmunol.1102404.

Hanrotel-Saliou C, Segalen I, Le Meur Y, Youinou P, Renaudineau Y. Glomerular antibodies in lupus nephritis. Clin Rev Allergy Immunol. 2011 Jun;40(3):151-8. doi: 10.1007/s12016-010-8204-4.

Thanei S, Vanhecke D, Trendelenburg M. Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways. Clin Immunol. 2015 Oct;160(2):180-7. doi: 10.1016/j.clim.2015.06.014.

Song D, Guo WY, Wang FM, et al. Complement Alternative Pathways Activation in Patients With Lupus Nephritis. Am J Med Sci. 2017 Mar;353(3):247-257. doi: 10.1016/j.amjms.2017.01.005.

Thurman JM, Nester CM. All Things Complement. Clin J Am Soc Nephrol. 2016 Oct 7;11(10):1856-1866. doi: 10.2215/CJN.01710216.

Bao L, Cunningham PN, Quigg RJ. Complement in Lupus Nephritis: New Perspectives. Kidney Dis (Basel). 2015 Sep;1(2):91-9. doi: 10.1159/000431278.

Mikdashi J, Nived O. Measuring disease activity in adults with systemic lupus erythematosus: the challenges of administrative burden and responsiveness to patient concerns in clinical research. Arthritis Res Ther. 2015 Jul 20;17:183. doi: 10.1186/s13075-015-0702-6.

Birmingham DJ, Irshaid F, Nagaraja HN, et al. The complex nature of serum C3 and C4 as biomarkers of lupus renal flare. Lupus. 2010 Oct;19(11):1272-80. doi: 10.1177/0961203310371154.

Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ. C1q: A fresh look upon an old molecule. Mol Immunol. 2017 Sep;89:73-83. doi: 10.1016/j.molimm.2017.05.025.

Fatemi A, Samadi G, Sayedbonakdar Z, Smiley A. Anti-C1q antibody in patients with lupus nephritic flare: 18-month follow-up and a nested case-control study. Mod Rheumatol. 2016;26(2):233-9. doi: 10.3109/14397595.2015.1074649.

Orbai AM, Truedsson L, Sturfelt G, et al. Anti-C1q antibodies in systemic lupus erythematosus. Lupus. 2015 Jan;24(1):42-9. doi: 10.1177/0961203314547791.

Bock M, Heijnen I, Trendelenburg M. Anti-C1q antibodies as a follow-up marker in SLE patients. PLoS One. 2015 Apr 16;10(4):e0123572. doi: 10.1371/journal.pone.0123572.

Bao L, Haas M, Quigg RJ. Complement factor H deficiency accelerates development of lupus nephritis. J Am Soc Nephrol. 2011 Feb;22(2):285-95. doi: 10.1681/ASN.2010060647.

Wang Y, Hu Q, Madri JA, Rollins SA, Chodera A, Matis LA. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8563-8.

Wang S, Wu M, Chiriboga L, Zeck B, Belmont HM. Membrane attack complex (mac) deposition in lupus nephritis is associated with hypertension and poor clinical response to treatment. Semin Arthritis Rheum. 2018 Oct;48(2):256-262. doi: 10.1016/j.semarthrit.2018.01.004.

Sciascia S, Radin M, Yazdany J, et al. Expanding the therapeutic options for renal involvement in lupus: eculizumab, available evidence. Rheumatol Int. 2017 Aug;37(8):1249-1255. doi: 10.1007/s00296-017-3686-5.

Mårtensson J, Bellomo R. The rise and fall of NGAL in acute kidney injury. Blood Purif. 2014;37(4):304-10. doi: 10.1159/000364937.

Suzuki M, Wiers KM, Klein-Gitelman MS, et al. Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis. Pediatr Nephrol. 2008 Mar;23(3):403-12. doi: 10.1007/s00467-007-0685-x.

Rubinstein T, Pitashny M, Levine B, et al. Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis. Rheumatology (Oxford). 2010 May;49(5):960-71. doi: 10.1093/rheumatology/kep468.

Satirapoj B, Kitiyakara C, Leelahavanichkul A, Avihingsanon Y, Supasyndh O. Urine neutrophil gelatinase-associated lipocalin to predict renal response after induction therapy in active lupus nephritis. BMC Nephrol. 2017 Aug 4;18(1):263. doi: 10.1186/s12882-017-0678-3.

Kulkarni O, Pawar RD, Purschke W, et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J Am Soc Nephrol. 2007 Aug;18(8):2350-8. doi: 10.1681/ASN.2006121348.

Gupta R, Yadav A, Aggarwal A. Longitudinal assessment of monocyte chemoattractant protein-1 in lupus nephritis as a biomarker of disease activity. Clin Rheumatol. 2016 Nov;35(11):2707-2714. doi: 10.1007/s10067-016-3404-9.

Singh RG, Usha, Rathore SS, Behura SK, Singh NK. Urinary MCP-1 as diagnostic and prognostic marker in patients with lupus nephritis flare. Lupus. 2012 Oct;21(11):1214-8. doi: 10.1177/0961203312452622.

Michaelson JS, Wisniacki N, Burkly LC, Putterman C. Role of TWEAK in lupus nephritis: a bench-tobedside review. J Autoimmun. 2012 Sep;39(3):130-42. doi: 10.1016/j.jaut.2012.05.003.

Schwartz N, Su L, Burkly LC, et al. Urinary TWEAK and the activity of lupus nephritis J Autoimmun. 2006 Dec;27(4):242-50. doi: 10.1016/j.jaut.2006.12.003.

Xuejing Z, Jiazhen T, Jun L, Xiangqing X, Shuguang Y, Fuyou L. Urinary TWEAK level as a marker of lupus nephritis activity in 46 cases. J Biomed Biotechnol. 2012;2012:359647. doi: 10.1155/2012/359647.

Zhang X, Nagaraja HN, Nadasdy T, et al. A composite urine biomarker reflects interstitial inflammation in lupus nephritis kidney biopsies. Kidney Int. 2012 Feb;81(4):401-6. doi: 10.1038/ki.2011.354.

Abulaban KM, Song H, Zhang X, et al. Predicting decline of kidney function in lupus nephritis using urine biomarkers. Lupus. 2016 Aug;25(9):1012-8. doi: 10.1177/0961203316631629.

Baker C, Belbin O, Kalsheker N, Morgan K. SERPINA3 (aka alpha-1-antichymotrypsin). Front Biosci. 2007 May 1;12:2821-35.

Aggarwal A, Gupta R, Negi VS, et al. Urinary haptoglobin, alpha-1 anti-chymotrypsin and retinol binding protein identified by proteomics as potential biomarkers for lupus nephritis. Clin Exp Immunol. 2017 May;188(2):254-262. doi: 10.1111/cei.12930.

Wolf BJ, Spainhour JC, Arthur JM, Janech MG, Petri M, Oates JC. Development of Biomarker Models to Predict Outcomes in Lupus Nephritis. Arthritis Rheumatol. 2016 Aug;68(8):1955-63. doi: 10.1002/art.39623.

Kitagori K, Yoshifuji H, Oku T, et al. Cleaved Form of Osteopontin in Urine as a Clinical Marker of Lupus Nephritis. PLoS One. 2016 Dec 19;11(12):e0167141. doi: 10.1371/journal.pone.0167141.

Wei R, Gao B, Shih F, et al. Alterations in urinary collagen peptides in lupus nephritis subjects correlate with renal dysfunction and renal histopathology. Nephrol Dial Transplant. 2017 Sep 1;32(9):1468-1477. doi: 10.1093/ndt/gfw446.

Birmingham DJ, Merchant M, Waikar SS, Nagaraja H4, Klein JB2, Rovin BH. Biomarkers of lupus nephritis histology and flare: deciphering the relevant amidst the noise. Nephrol Dial Transplant. 2017 Jan 1;32(suppl_1):i71-i79. doi: 10.1093/ndt/gfw300.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281-97.

Merchant ML, Rood IM, Deegens JKJ, Klein JB. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol. 2017 Dec;13(12):731-749. doi: 10.1038/nrneph.2017.148.

Cardenas-Gonzalez M, Srivastava A, Pavkovic M, et al. Identification, Confirmation, and Replication of Novel Urinary MicroRNA Biomarkers in Lupus Nephritis and Diabetic Nephropathy. Clin Chem. 2017 Sep;63(9):1515-1526. doi: 10.1373/clinchem.2017.274175.

Olivares D, Perez-Hernandez J, Forner MJ, et al. Urinary levels of sirtuin-1 associated with disease activity in lupus nephritis. Clin Sci (Lond). 2018 Mar 15;132(5):569-579. doi: 10.1042/CS20171410.

Hu N, Long H, Zhao M, Yin H, Lu Q. Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scand J Rheumatol. 2009 Nov-Dec;38(6):464-71. doi: 10.3109/03009740902895750.

Ikuma D, Hiromura K, Kajiyama H, et al. The correlation of urinary podocytes and podocalyxin with histological features of lupus nephritis. Lupus. 2018 Mar;27(3):484-493. doi: 10.1177/0961203317734918.

Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6758-63. doi: 10.1073/pnas.0701266104.

Sanchez E, Palomino-Morales RJ, Ortego-Centeno N, et al. Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus. Hum Mol Genet. 2009 Oct 1;18(19):3739-48. doi: 10.1093/hmg/ddp301.

Han S, Kim-Howard X, Deshmukh H, et al. Evaluation of imputation-based association in and around the integrin-alpha-M (ITGAM) gene and replication of robust association between a nonsynonymous functional variant within ITGAM and systemic lupus erythematosus (SLE). Hum Mol Genet. 2009 Mar 15;18(6):1171-80. doi: 10.1093/hmg/ddp007.

Harley IT, Kaufman KM, Langefeld CD, Harley JB, Kelly JA. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet. 2009 May;10(5):285-90. doi: 10.1038/nrg2571.

Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1,UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009 Nov;41(11):1228-33. doi: 10.1038/ng.468.

Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-kappa B and apoptosis signaling. Biochem Pharmacol. 2009 Jul 15;78(2):105-14. doi: 10.1016/j.bcp.2009.02.009.

Caster DJ, Korte EA, Nanda SK, et al. ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. J Am Soc Nephrol. 2013 Nov;24(11):1743-54. doi: 10.1681/ASN.2013020148.

Caster DJ, Korte EA, Tan M, et al. Neutrophil exocytosis induces podocyte cytoskeletal reorganization and proteinuria in experimental glomerulonephritis. Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F595-F606. doi: 10.1152/ajprenal.00039.2018.

Adrianto I, Wen F, Templeton A, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011 Mar;43(3):253-8. doi: 10.1038/ng.766.

Sanchez E, Nadig A, Richardson BC, et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann Rheum Dis. 2011 Oct;70(10):1752-7. doi: 10.1136/ard.2011.154104.

Li LH, Yuan H, Pan HF, Li WX, Li XP, Ye DQ. Role of the Fcgamma receptor IIIA-V/F158 polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Scand J Rheumatol. 2010 Mar;39(2):148-54. doi: 10.3109/03009740903292304.

Bates JS, Lessard CJ, Leon JM, et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun. 2009 Jul;10(5):470-7. doi: 10.1038/gene.2009.31.

Lin CP, Adrianto I, Lessard CJ, et al. Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun. 2012 Apr;13(3):232-8. doi: 10.1038/gene.2011.82.

Zhou XJ, Cheng FJ, Qi YY, Zhao MH, Zhang H. A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. Biomed Res Int. 2013;2013:597921. doi: 10.1155/2013/597921.

Freedman BI, Langefeld CD, Andringa KK, et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 2014 Feb;66(2):390-6. doi: 10.1002/art.38220.

Munroe ME, James JA. Genetics of Lupus Nephritis: Clinical Implications. Semin Nephrol. 2015 Sep;35(5):396-409. doi: 10.1016/j.semnephrol.2015.08.002.

Korte EA, Caster DJ, Barati MT, et al. ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation. Am J Pathol. 2017 Dec;187(12):2799-2810. doi: 10.1016/j.ajpath.2017.08.018. 

Almlof JC, Alexsson A, Imgenberg-Kreuz J, et al. Novel risk genes for systemic lupus erythematosus predicted by random forest classification. Sci Rep. 2017 Jul 24;7(1):6236. doi: 10.1038/s41598-017-06516-1.

Copyright (c) 2019 KIDNEYS

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© "Publishing House "Zaslavsky", 1997-2020


   Seo анализ сайта