Endothelial dysfunction in the pathogenesis of diabetic kidney disease

A.I. Gozhenko, H.S. Kuznetsova, K.S. Kuznetsova, S.H. Kuznyetsov, T.M. Byts


The article deals with the integrated characteristics of hyperglycemia role in the pathogenesis of vascular complications of diabetes mellitus. The article analyzes the modern data on the mechanisms of development and progression of diabetic kidney disease. The paper considers the specificity of the structure and damage of the endothelium and the basal membrane in the capillaries of the kidney glomeruli and the role of endothelial dysfunction in the pathogenesis of diabetic kidney disease is evaluated. Literature was searched for the databases Scopus, PubMed, MedLine and CyberLeninka.


endothelial dysfunction; diabetes mellitus; diabetic kidney disease; hyperglycemia; chronic kidney disease


WHO. Global report on diabetes, 2016. Available from: http://www.who.int/diabetes/global-report/en/.

Kuznetsova ES, Kuznetsova AS, Shukhtin VV, Gozhenko AI. Рarticular qualities of the renal osmoregulatory function in patients with type 2 diabetes. Ukrai'ns'kyj zhurnal nefrologii' ta dializu. 2015;4(49):21-26. (in Russian).

Dedov II, Shestakova MV. Diabeticheskaya nefropatiya. Moscow: Universum Pablishing; 2000. 239 p. (in Russian).

Gozhenko AI, Kuznetsova HS, Kuznetsova KS, Kuznetsova OM, Byts TM, Zukow W. Morpho-functional basis of endothelial dysfunction in diabetes mellitus. Journal of Education, Health and Sport. 2017;7(6):516-524. doi: 10.5281/zenodo.822050. (in Russian).

Gozhenko AI, Kuznetsova HS, Kuznetsova KS, Byts TM, Susla AB. Endothelial dysfunction in the pathogenesis of diabetes complications. The message I. Endothelial dysfunction: etiology, pathogenesis and diagnostic methods. Endokrynologia. 2017;22(2):171-181. (in Russian).

Bulaeva NI, Golukhova EZ. Endothelial dysfunction and oxidant stress: the role in cardiovascular pathology. Kreativnaya kardiologiya. 2013; 1: 14-22. (in Russian).

Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol. 1997 Nov;20(11 Suppl 2):II-3-10. PMID: 9422846.

Tesfamariam B, Brown ML, Cohen RA. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest. 1991 May;87(5):1643-8. doi: 10.1172/JCI115179.

Singh TP, Groehn H, Kazmers A. Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus. J Am Coll Cardiol. 2003 Feb 19;41(4):661-5. doi: 10.1016/S0735-1097(02)02894-2.

Williams B. Factors regulating the expression of vascular permeability/vascular endothelial growth factor by human vascular tissues. Diabetologia. 1997 Jul;40 Suppl 2:S118-20. doi: 10.1007/s001250051423.

Boychuk TM, Tolstanov DC,Grytsiuk MI, Gozhenko AI. Glycated proteins in diabetes:the phenomenon of formation and pathogenetic effects (review). Actual problems of transport medicine. 2013; 3: 52-59. (in Ukrainian).

Lee CL, Li TC, Lin SY, et al. Dynamic and Dual Effects of Glycated Hemoglobin on Estimated Glomerular Filtration Rate in Type 2 Diabetic Outpatients. Am J Nephrol. 2013;38(1):19-26. doi: 10.1159/000351803.

Shadman Z, Khoshniat M, Poorsoltan N, et al. Association of high carbohydrate versus high fat diet with glycated hemoglobin in high calorie consuming type 2 diabetics. J Diabetes Metab Disord. 2013 Jun 14;12:27. doi: 10.1186/2251-6581-12-27.

Kasatkina SG, Kasatkin SN. The meaning of endothelium dysfunction in patients with diabetes mellitus of the second type. Fundamental research. 2011;7:248-252. (in Russian).

Lupinskaya ZA, Zarif'yan AG, Gurovich TT, Shleyfer SG. Endotelii: Funktsiia i disfunktsiia [Endothelium: Function and dysfunction]. Bishkek: KRSU; 2008. 373 p. (in Russian).

Chrissobolis S, Miller AA, Drummond GR, Kemp-Harper BK, Sobey CG. Oxidative stress and endothelial dysfunction in cere­brovascular disease. Front Biosci (Landmark Ed). 2011 Jan 1;16:1733-45. doi: 10.2741/3816.

Gozhenko AI, Kotyuzhinskaya SG, Kovalevskaya LA. Predecessors of Atherosclerosis: New developments. Lik sprava. 2014;(12):18-25. PMID: 26638463. (in Ukrainian).

Hohenstein B, Hausknecht B, Boehmer K, Riess R, Brekken RA, Hugo CPM. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int. 2006 May;69(9):1654-61. doi: 10.1038/sj.ki.5000294.

Awata T, Inoue K, Kurihara S, et al. A common polymorphism in the 5’-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51(5):1635-1639. doi: 10.2337/diabetes.51.5.1635.

Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl. 2000 Sep;77:S113-9. doi: 10.1046/j.1523-1755.2000.07718.x.

Vaisman N, Gospodarowicz D, Neufeld G. Characterization of the receptors for vascular endothelial growth factor. J Biol Chem. 1990 Nov 15;265(32):19461-6. PMID: 2246236.

Shyshko ON, Mokhort TV, Konstantinova EE, Tsapaeva NL, Mosse KA. The role of vascular endothelial growth factor in pathogenesis of diabetic nephropathy. Мeditsinskii zhurnal. 20013;1(43):132-135. (in Russian).

Malygina NA, Kostomarova IV, Melentyev IA, Melentyev AS, Vershinin AA, Serova LD. Molecular and genetic markers for coronary heart disease prognosis in elderly patients. Russian Cardiology Journal. 2009;4(78):68-72. (in Russian). doi: 10.15829/1560-4071-2009-4-68-72.

Liu D, Jiang Z, Dai L, Zhang X, Yan C, Han Y. Association between the − 786T>C 1polymorphism in the promoter region of endothelial nitric oxide synthase (eNOS) and risk of coronary artery disease: A systematic review and meta-analysis. Gene. 2014 Jul 15;545(1):175-83. doi: 10.1016/j.gene.2013.09.099.

Bebyakova NA, Khromova AV, Feliksova OM. T-786c polymorphism in endothelial nitric oxide synthase gene is assotiated with peripheral vasoconstriction. Fundamental research. 2013;12(2):176-179. (in Russian).

Niu W, Qi Y. An updated meta-analysis of endothelial nitric oxide synthase gene: three well-characterized polymorphisms with hypertension . PLoS One. 2011;6(9):e24266. doi: 10.1371/journal.pone.0024266.

Mukhina ON, editor. Nephrology: the national leadership. Series National guidelines. Moscow: GEOTAR-Media; 2009. 720 p.

Dedov II, Shestakovа MV. Diabetes mellitus. Moscow: Universum Publishing; 2003. 455p. (in Russian).

Danilov RK, editor. Guide to histology, 2nd ed. SPb: SpecLit; 2010. 511 p. (in Russian).

Semidotskaya ZhD, Pererva LA. The indices of endothelin-1 and fibronectin in patients with diabetic nephropathy. Ukr ter journal. 2004;1:66-68. (in Russian).

Blann AD, Lip GY. Endothelial integrity, soluble adhesion molecules and platelet markers in type 1 diabetes mellitus. Diabet Med. 1998 Aug;15(8):634-42. doi: 10.1002/(SICI)1096-9136(199808)15:8<634::AID-DIA636>3.0.CO;2-8.

Lerman A, Hildebrand FL, Aarhus LL, Burnett JC. Endotelin has biological actions at pathophysiological concentrations. Circulation.1999;83(5):1808-14. doi: 10.1161/01.CIR.83.5.1808.

Dihn DT, Frauman AG, Jonston CI, Fabiani ME. Angiotensin receptors: distribution, signaling and function. Clin Sci (Lond). 2001 May;100(5):481-92. doi: 10.1042/cs1000481.

Campbell DJ. The site of angiotensin production. J Hypertens. 1985 Jun;3(3):199-207. PMID: 3894514.

Rosenberg ME, Smith LJ, Correa-Rotter R, Hostetter TH. The paradox of the renin-angiotensin system in chronic renal disease. Kidney Int. 1994 Feb;45(2):403-10. doi: 10.1038/ki.1994.52.

Price DA, Porter LE, Gordon M, et al. The Paradox of the Low-Renin State in Diabetic Nephropathy. J Am Soc Nephrol. 1999 Nov;10(11):2382-91. PMID: 10541298.

Dzau VJ. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med. 1993 Apr 26;153(8):937-42.

Shestakova MV. The role of the tissue renin-angiotensin-aldosterone system in the development of metabolic syndrome, diabetes mellitus and its vascular complications. Diabetes mellitus. 2010; 3: 14-19. doi: 10.14341/2072-0351-5481. (in Russian).

Kang JJ, Toma I, Sipos A, Meer EJ, Vargas SL, Peti-Peterdi J. The collecting duct is the major source of prorenin in diabetes. Hypertension. 2008 Jun;51(6):1597-604. doi: 10.1161/HYPERTENSIONAHA.107.107268.

Sidorenko BA, Preobrazhenskiy DV. The place of modern inhibitors of angiotensin-converting enzyme in the treatment of cardiovascular diseases. Moscow: Cardiology; 2000. 93p. (in Russian).

Hickley KA, Rubanyi DM, Paul RJ, Highsmith RF. Characterization of coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol. 1985 May;248(5 Pt 1):C550-6. doi: 10.1152/ajpcell.1985.248.5.C550.

Belenkov YuN, Mareyev VYu, Ageyev FT. Endothelial dysfunction in heart failure: the possibility of therapy with angiotensin-converting enzyme inhibitors. Kardiologiia. 2001;41(5):100-104.

Shishkin AN, Lyndina ML. Endothelial dysfunction and hypertension. Arterial’naya Gipertenziya. 2008;14(4):315-319. (in Russian).

Dzau V, Bernstein K, Celermaier D, et al. The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and endpoint data. Am J Cardiol. 2001 Nov 8;88(9A):1L-20L. doi: 10.1016/S0002-9149(01)01878-1.

Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin–angiotensin systems. Physiol Rev. 2006;86(3):747-803. doi: 10.1152/physrev.00036.2005.

Kravchuk AV, Nykytenko OP, Sirman VM, Kuznetsova KS, Romaniv LV, Gozhenko AI. Pathophysiological and methodological aspects of determining renal functional reserve in clinical nephrology. Pocki. 2016;(1.15):22- 27. (in Ukranian). doi: 10.22141/2307-1257.

DOI: https://doi.org/10.22141/2307-1257.7.1.2018.122215

Copyright (c) 2018 KIDNEYS

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


© "Publishing House "Zaslavsky", 1997-2018


   Seo анализ сайта